Publication Type:


Transliteration of original Title: 
Aksiomaticheskiy metod v sovremennoy nauke i tekhnike: pragmaticheskie aspekty
Serge Kovalyov
Institute of Control Sciences V. A. Trapeznikov, Russian Academy of Sciences
Andrei Rodin
Institute of Philosophy, Russian Academy of Sciences
Issue number: 
No. 1 (Vol. 47)

In 1900 David Hilbert announced his famous list of then-opened mathematical problems; the problem number 6 in this list is axiomatization of physical theories. Since then a lot of systematic efforts have been invested into solving this problem. However the results of these efforts turned to be less successful than the early enthusiasts of axiomatic method expected. The existing axiomatizations of physical and biological theories provide a valuable logical analysis of these theories but they do not constitute anything like their standard presentation, which can be used for transmission, evaluation, and justification of physical and biological knowledge. This state of the art in the axiomatization of physics is strong evidence that the standard notion of axiomatic theory stemming from Hilbert and Tarski is not appropriate for the task. However in the recent years in mathematics there emerged a new axiomatic approach best represented by the Homotopy Type theory (HoTT). We argue that the constructive axiomatic architecture used in HoTT has better chances to be successfully applied in physics as well as in computer science and engineering.

axiomatic method, axiomatization of physics, constructive axiomatic architecture, homotopy type theory

Appel, 1977 Appel K., Haken W. Every planar map is four colorable. Part I. Discharging. Illinois Journal of Mathematics, vol. 21, pp. 429–490, 1977.

Arnold, 2002 – Arnold V.I. Matematicheskaya duel' vokrug Bourbaki (The Mathematical Duel around Bourbaki). Vestnik Rossiiskoi Akademii Nauk – The Bulletin of the Russian Academy of Sciences, 2002, vol. 72, no.3, pp. 245–250.

Balzer, 1996 – Balzer W., Moulines U. (eds.). Structuralist Theory of Science: Focal Issues, New Results (Perspectives in Analytical Philosophy, vol. 6). Berlin: de Gruyter, 1996.

Birkhoff, 1936 – Birkhoff G., von Neumann J. The logic of quantum mechanics. Annals of Mathematics, 1936, vol. 37, pp. 823–843.

Bourbaki, 1939–1988 – Bourbaki N. Eléments de Mathématique. 10 vols. Paris: Hermann, 1939–1988.

Bourbaki, 1972 – Bourbaki N. Univers. In: Artin M., Grothendieck A., Verdier J.-L. (eds.) Séminaire de Géométrie Algébrique du Bois Marie 1963-64 Théorie des topos et cohomologie étale des schémas (SGA 4), vol. 1 (Lecture notes in mathematics, vol. 269) (in French). Berlin, N.Y.: Springer-Verlag, 1972, pp. 185–217.

Bunge, 1967 – Bunge M. Foundations of Physics. Berlin, N.Y.: Springer-Verlag, 1967.

Bunge, 1972 – Bunge M. Philosophy of Physics. Berlin, N.Y.: Springer-Verlag, 1972.

Chiara, 2004 – Chiara M.D., Giutini R., Greechi R. Reasoning in Quantum Theory (Trends in Logic: Studia Logica Library, vol. 22). Berlin, N.Y.: Springer-Verlag, 2004.

Dummett, 1976 – Dummett M. Is logic empirical? In: Lewis H. D. (ed.), Contemporary British Philosophy, 4th series, London: Allen and Unwin, 5:45–68, 1976.

Février, 1951 – Destouches-Février P. La structure des théories physiques. Paris, Presses Universitaires de France, 1951.

Fraassen, 1974 – van Fraassen B. The labyrinth of quantum logics. In: Cohen R., Wartofsky M. (eds.) Logical and Epistemological Studies in Contemporary Physics. Boston Studies in the Philosophy of Science, 13:224– 254, 1974.

Fraassen, 1987 – van Fraassen B. The semantic approach to scientific theories. In: Nersessian N.J. (ed.) The Process of Science: Contemporary Approaches to Understanding Scientific Practice, Kluwer, 1987, pp. 106–124.

Esanu, 2013 – Esanu A. Evolutionary biology and the axiomatic method revisited. The Romanian Journal of Analytic Philosophy, 2013, vol. 7, no.1, pp. 19–41.

Haik, 2005 – El-Haik B.S. Axiomatic quality. Integrating axiomatic design with six-sigma reliability and quality engineering. N.Y.: Wiley-Interscience, 2005.

Haken, 1977 – Haken W., Appel K., Koch J. Every planar map is four colorable. Part II. Reducibility. Illinois Journal of Mathematics, 1977, vol. 21, pp. 491–567. 

Hilbert, 1899 – Hilbert D. Grundlagen der Geometrie. Leipzig, 1899.

Hilbert, 1902 – Hilbert D. Mathematical problems. Bulletin of the American Mathematical Society, 1902, vol. 8, no. 10, pp. 437–479. 

Hilbert, 1967 – Hilbert D.. Foundations of mathematics. In: van Heijenoort J. (ed.), From Frege to Gödel: A Source Book in the Mathematical Logic, vol. 2, pp. 464–480, 1967.

Hoare, 1969 – Hoare C.A.R. An axiomatic basis for computer programming. Communications of the ACM, 1969,  vol. 12, no.10, pp. 576–580.

Hogger, 1988 – Hogger К. Vvedenie v logitcheskoye programminrovamie (Introduction to Logic Programming), Mosсow, 1988.

Kiczales, 1997 – Kiczales G. et al. Aspect-oriented programming. Lecture Notes in Computer Science, 1241:220–242, 1997.

Kovalyov, 2013 – Kovalyov S.P., Semantika aspektno-orientirovannogo modelirovanija dannikh i protzessov. (Semantics of aspect-oriented modeling of data and processes, Informatics and its applications).  Informatika i ee primenenijaInformatics and its application, 2013, vol.7, no.3, pp.70–80. 

Kovalyov, 2014 – Kovalyov S.P. Teoretiko-kategorniy podkhod k proektirovaniyu programmnykh system (Cathegory-theoretic approach to designing programmed systems). Fundamentalnaya i prikladnaya matematika – Fundamental and applied mathematics, 2014, vol. 19, no.3, pp. 111–170.

Lee, 2006 – Lee D.G., Suh N.P. Axiomatic Design and Fabrication of Composite Structures. Applications in Robots, Machine Tools, and Automobiles. Oxford University Press, 2006.

Leibniz, 1679 – Leibniz G.W. Characteristica geometrica. In: Garhardt C.I. (ed.) Leibnizens Mathematische Schriften, Halle 1849–1863, 5:141–168, 1679.

Leventchuk 2015 – Leventchuk A.I. Sistemnoingenernoye myshlenie (System engineering thinking). 2015. Available at

Lifschitz, 2008 – Lifschitz V., van Harmelen F., Porter B. Handbook of Knowledge Representation. Elsevier Science, 2008.

Mackey, 1963 – Mackey G.W. The Mathematical Foundations of Quantum Mechanics. N.Y., Amsterdam: W.A. Benjamin, Inc., 1963.

Mainzer, 2014 – Mainzer К. Die Berechnung der Welt: Von der Weltformel zu Big Data. C.H. Beck, 2014.

Martin-Löf, 1984 – Martin-Löf P. Intuitionistic Type Theory (Notes by Giovanni Sambin of a series of lectures given in Padua, June 1980). Napoli: BIBLIOPOLIS, 1984.

McKinsey, 1954 – McKinsey J.C.C., Suppes P. Review of “La structure des théories physiques” by P. Destouches-Février. Journal of Symbolic Logics, 19(1):52–55, 1954.

Moulines, 1987 – Moulines U., Balzer W., Sneed J.D. An architectonic for science. Reidel, 1987.

Moulines, 2000 – Moulines U., Balzer W., Sneed J.D. (eds.). Structuralist Knowledge Representation: Paradigmatic Examples (Poznan Studies in the Philosophy of the Sciences and the Humanities, vol. 75). Amsterdam: Rodopi, 2000.

Neumann, 1932 – von Neumann J. Mathematische Grundlagen der Quantenmechanik. Berlin, N.Y.: Springer-Verlag, 1932.

Nicholson, 2013 – Nicholson D.J., Gawne R. Rethinking Woodger’s legacy in the philosophy of biology. Journal of the History of Biology, 2013, vol.47, pp. 243–292.

Puccini, 2004 – Puccini G., Vucetich H. Axiomatic foundations of Galilean quantum field theories. Foundations of Physics, 2004, vol.34, no2, pp. 263–295.

Putnam, 1968 – Putnam H. Is logic empirical? In: Cohen R., Wartofsky M. (eds.) Logical and Epistemological Studies in Contemporary Physics. Boston Studies in the Philosophy of Science, 5:216–241, 1968.

Rodin, 2015 – Rodin A. On Constructive Axiomatic Method. arXiv: 1408.3591, 2015.

Schreiber, 2014a – Schreiber U. Quantization via Linear homotopy types. arXiv: 1402.7041, 2014.

Schreiber, 2014b – Schreiber U., Shulman M. Quantum gauge field theory in cohesive homotopy type theory. arXiv:1408.0054, 2014.

Sneed, 1971 – Sneed J.D. The logical structure of mathematical physics. Reidel, 1971.

Sorensen, 2006 – Sorensen M.H., Urzyczyn P. Lectures on the Curry-Howard Isomorphism (Studies in Logic and the Foundations of Mathematics, vol. 149). Elsevier, 2006.

Stegmüller, 1979 – Stegmüller W. The structuralist view of theories: a possible analogue of the Bourbaki programme in physical science. Berlin, N.Y.: Springer-Verlag, 1979.

Steimann, 2006 – Steimann F. The paradoxical success of aspect-oriented programming. Proceedings of the International Conference OOPSLA’06. Portland, 2006, pp. 481–497.

Sugar, 1953 – Sugar A.C., McKinsey J.C.C., Suppes P.C. Axiomatic foundations of classical particle mechanics. Journal of Rational Mechanics and Analysis, 2:253–272, 1953.

Suh, 2001 – Suh N.P. Axiomatic design: advances and applications. Oxford: Oxford University Press, 2001.

Tarski, 1941 – Tarski A. Introduction to Logic and to the Methodology of Deductive Sciences. Dover, 1941.

Taylor, 1999 – Taylor P. Practical foundations of mathematics (Cambridge Studies in Advanced Mathematics). Cambridge: Cambridge University Press, 1999.

Voevodsky, 2013 – Voevodsky V. et al. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study (Princeton); available at, 2013.

Woodger, 1937 – Woodger J.H. Axiomatic method in biology. Cambridge: Cambridge University Press, 1937.

Full Text: